Advertisement

Comparative evaluation of temporal subtraction computed tomography and non-echoplanar diffusion-weighted imaging for the mastoid extension of middle ear cholesteatoma

Published:March 24, 2022DOI:https://doi.org/10.1016/j.anl.2022.03.015

      Abstract

      Objective

      Preoperative imaging assessment influences the decision to perform mastoidectomy for the mastoid extension of middle ear cholesteatoma. This study compared the performance of temporal subtraction CT (TSCT) and non-echoplanar diffusion-weighted imaging (non-EP DWI) in evaluating such mastoid extensions.

      Methods

      We retrospectively evaluated 239 consecutive patients with surgically proven middle ear cholesteatoma between April 2016 and April 2021. The diagnostic performance of TSCT, wherein the presence of black color indicated progressive bone erosion, and non-EP DWI, wherein high signal intensity in the mastoid region suggested mastoid extension, was compared using Fisher's exact test.

      Results

      In 34 patients with evaluable TSCT images, black color was significantly more common in patients with mastoid extension than in those without; the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of TSCT were 1.00, 0.95, 0.94, 1.00, and 0.97, respectively. In 90 patients with evaluable non-EP DWI, high signal intensity was significantly more common in patients with mastoid extension than in those without; the sensitivity, specificity, PPV, NPV, and accuracy of non-EP DWI were 0.88, 0.85, 0.91, 0.81, and 0.87, respectively. In 16 patients with both evaluable TSCT and non-EP DWI, the diagnostic performance of the TSCT was slightly superior to that of the non-EP DWI for predicting mastoid extension, although the difference was not significant.

      Conclusions

      TSCT images generated using consecutively acquired preoperative high-resolution CT images are useful for predicting mastoid extension of middle ear cholesteatoma, and the diagnostic performance of TSCT is non-inferior to that of non-EP DWI.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Auris Nasus Larynx
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      Reference

        • Yung M
        • Tono T
        • Olszewska E
        • Yamamoto Y
        • Sudhoff H
        • Sakagami M
        • et al.
        EAONO/JOS joint consensus statements on the Definitions, Classification and Staging of Middle Ear Cholesteatoma.
        J Int Adv Otol. 2017; 13: 1-8https://doi.org/10.5152/iao.2017.3363
        • Abdul-Aziz D
        • Kozin ED
        • Lin BM
        • Wong K
        • Shah P V
        • Remenschneider AK
        • et al.
        Temporal bone computed tomography findings associated with feasibility of endoscopic ear surgery.
        Am J Otolaryngol. 2017; 38: 698-703https://doi.org/10.1016/j.amjoto.2017.06.007
        • Cimsit NC
        • Cimsit C
        • Baysal B
        • Ruhi IC
        • Ozbilgen S
        • Aksoy EA.
        Diffusion-weighted MR imaging in postoperative follow-up: Reliability for detection of recurrent cholesteatoma.
        Eur J Radiol. 2010; 74: 121-123https://doi.org/10.1016/j.ejrad.2009.01.025
        • Li PMMC
        • Linos E
        • Gurgel RK
        • Fischbein NJ
        • Blevins NH.
        Evaluating the utility of non–echo-planar diffusion-weighted imaging in the preoperative evaluation of cholesteatoma: A meta-analysis.
        Laryngoscope. 2013; 123: 1247-1250https://doi.org/10.1002/lary.23759
      1. Lingam ÃRK, Bassett P. A Meta-Analysis on the Diagnostic Performance of Non-Echoplanar Diffusion-Weighted Imaging in Detecting Middle Ear Cholesteatoma : 10 Years On 2017:521–8. https://doi.org/10.1097/MAO.0000000000001353.

        • Muzaffar J
        • Metcalfe C
        • Colley S
        • Coulson C.
        Diffusion-weighted magnetic resonance imaging for residual and recurrent cholesteatoma: a systematic review and meta-analysis.
        Clin Otolaryngol. 2017; 42: 536-543https://doi.org/10.1111/coa.12762
        • Dubrulle F
        • Souillard R
        • Chechin D
        • Vaneecloo FM
        • Desaulty A
        • Vincent C.
        Diffusion-weighted MR Imaging Sequence in the Detection of Postoperative Recurrent Cholesteatoma.
        Radiology. 2006; 238: 604-610https://doi.org/10.1148/radiol.2381041649
        • Felici F
        • Scemama U
        • Bendahan D
        • Lavieille J-P
        • Moulin G
        • Chagnaud C
        • et al.
        Improved Assessment of Middle Ear Recurrent Cholesteatomas Using a Fusion of Conventional CT and Non-EPI-DWI MRI.
        Am J Neuroradiol. 2019; 40 (LP –1551): 1546https://doi.org/10.3174/ajnr.A6141
        • Henninger B
        • Kremser C.
        Diffusion weighted imaging for the detection and evaluation of cholesteatoma.
        World J Radiol. 2017; 9: 217-222https://doi.org/10.4329/wjr.v9.i5.217
        • Baba A
        • Kurihara S
        • Fukuda T
        • Yamauchi H
        • Matsushima S
        • Ikeda K
        • et al.
        Non-echoplanar diffusion weighed imaging and T1-weighted imaging for cholesteatoma mastoid extension.
        Auris Nasus Larynx. 2021; https://doi.org/10.1016/j.anl.2021.01.010
        • Aoki T
        • Murakami S
        • Kim H
        • Fujii M
        • Takahashi H
        • Oki H
        • et al.
        Temporal Subtraction Method for Lung Nodule Detection on Successive Thoracic CT Soft-Copy Images.
        Radiology. 2013; 271: 255-261https://doi.org/10.1148/radiol.13130460
        • Terasawa T
        • Aoki T
        • Murakami S
        • Kim H
        • Fujii M
        • Kobayashi M
        • et al.
        Detection of lung carcinoma with predominant ground-glass opacity on CT using temporal subtraction method.
        Eur Radiol. 2018; 28: 1594-1599https://doi.org/10.1007/s00330-017-5085-4
        • Sakamoto R
        • Yakami M
        • Fujimoto K
        • Nakagomi K
        • Kubo T
        • Emoto Y
        • et al.
        Temporal Subtraction of Serial CT Images with Large Deformation Diffeomorphic Metric Mapping in the Identification of Bone Metastases.
        Radiology. 2017; 285: 629-639https://doi.org/10.1148/radiol.2017161942
        • Hoshiai S
        • Masumoto T
        • Hanaoka S
        • Nomura Y
        • Mori K
        • Hara T
        • et al.
        Clinical usefulness of temporal subtraction CT in detecting vertebral bone metastases.
        Eur J Radiol. 2019; 118: 175-180https://doi.org/10.1016/j.ejrad.2019.07.024
        • Ueno M
        • Aoki T
        • Murakami S
        • Kim H
        • Terasawa T
        • Fujisaki A
        • et al.
        CT temporal subtraction method for detection of sclerotic bone metastasis in the thoracolumbar spine.
        Eur J Radiol. 2018; 107: 54-59https://doi.org/10.1016/j.ejrad.2018.07.017
        • Akasaka T
        • Yakami M
        • Nishio M
        • Onoue K
        • Aoyama G
        • Nakagomi K
        • et al.
        Detection of suspected brain infarctions on CT can be significantly improved with temporal subtraction images.
        Eur Radiol. 2019; 29: 759-769https://doi.org/10.1007/s00330-018-5655-0
        • Baba A
        • Matsushima S
        • Fukuda T
        • Yamauchi H
        • Fujioka H
        • Hasumi J
        • et al.
        Improved assessment of middle ear recurrent/residual cholesteatomas using temporal subtraction CT.
        Jpn J Radiol. 2021; https://doi.org/10.1007/s11604-021-01209-2
        • Baba A.
        • Kurokawa R.
        • Kurokawa M.
        • Ota Y.
        • Matsushima S.
        • Fukuda T.
        • Yamauchi H.
        • Kano R
        • Shoji T.
        • Kurihara S.
        • Nakazawa T.
        • Yamamoto Y.
        • Kojima H.
        • Srinivasan HO A.
        Preoperative Prediction for Mastoid Extension of Middle Ear Cholesteatoma Using Temporal Subtraction Serial HRCT Studies.
        Eur Radiol. 2021; (In Press)
        • Holden M
        • Hill DLG
        • Denton ERE
        • Jarosz JM
        • Cox TCS
        • Rohlfing T
        • et al.
        Voxel similarity measures for 3-D serial MR brain image registration.
        IEEE Trans Med Imaging. 2000; 19: 94-102https://doi.org/10.1109/42.836369
        • Tono T
        • Sakagami M
        • Kojima H
        • Yamamoto Y
        • Matsuda K
        • Komori M
        • et al.
        Staging and classification criteria for middle ear cholesteatoma proposed by the Japan Otological Society.
        Auris Nasus Larynx. 2017; 44: 135-140https://doi.org/10.1016/j.anl.2016.06.012
        • Landis JR
        • Koch GG.
        The Measurement of Observer Agreement for Categorical Data.
        Biometrics. 1977; 33: 159-174https://doi.org/10.2307/2529310
        • Hiyama T
        • Kuno H
        • Sekiya K
        • Tsushima S
        • Sakai O
        • Kusumoto M
        • et al.
        Bone Subtraction Iodine Imaging Using Area Detector CT for Evaluation of Skull Base Invasion by Nasopharyngeal Carcinoma.
        Am J Neuroradiol. 2019; 40 (LP –141): 135https://doi.org/10.3174/ajnr.A5906
        • Hiyama T
        • Kuno H
        • Sekiya K
        • Tsushima S
        • Oda S
        • Kobayashi T.
        Subtraction iodine imaging with area detector CT to improve tumor delineation and measurability of tumor size and depth of invasion in tongue squamous cell carcinoma.
        Jpn J Radiol. 2021; https://doi.org/10.1007/s11604-021-01196-4
        • Kurokawa R
        • Hagiwara A
        • Nakaya M
        • Maeda E
        • Yamaguchi H
        • Gonoi W
        • et al.
        Forward-projected Model-based Iterative Reconstruction SoluTion in Temporal Bone Computed Tomography: A Comparison Study of All Reconstruction Modes.
        J Comput Assist Tomogr. 2021; : 45
        • Kurokawa R
        • Maeda E
        • Mori H
        • Amemiya S
        • Sato J
        • Ino K
        • et al.
        Evaluation of the depiction ability of the microanatomy of the temporal bone in quarter-detector CT: Model-based iterative reconstruction vs hybrid iterative reconstruction.
        Medicine (Baltimore). 2019; : 98
        • Baba A
        • Kurihara S
        • Ogihara A
        • Matsushima S
        • Yamauchi H
        • Ikeda K
        • et al.
        Preoperative predictive criteria for mastoid extension in pars flaccida cholesteatoma in assessments using temporal bone high-resolution computed tomography.
        Auris Nasus Larynx. 2021; 48: 609-614https://doi.org/10.1016/j.anl.2020.11.014