Advertisement
Research Article| Volume 50, ISSUE 2, P212-217, April 2023

Application of UNETR for automatic cochlear segmentation in temporal bone CTs

  • Author Footnotes
    1 These authors contributed equally to this work.
    Zhenhua Li
    Footnotes
    1 These authors contributed equally to this work.
    Affiliations
    Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, China
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to this work.
    Langtao Zhou
    Footnotes
    1 These authors contributed equally to this work.
    Affiliations
    School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou, China
    Search for articles by this author
  • Songhua Tan
    Affiliations
    Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, China
    Search for articles by this author
  • Anzhou Tang
    Correspondence
    Corresponding author.
    Affiliations
    Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, China
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to this work.
Published:August 12, 2022DOI:https://doi.org/10.1016/j.anl.2022.06.008

      Abstract

      Objective

      To investigate the feasibility of a deep learning method based on a UNETR model for fully automatic segmentation of the cochlea in temporal bone CT images.

      Methods

      The normal temporal bone CTs of 77 patients were used in 3D U-Net and UNETR model automatic cochlear segmentation. Tests were performed on two types of CT datasets and cochlear deformity datasets.

      Results

      Through training the UNETR model, when batch_size=1, the Dice coefficient of the normal cochlear test set was 0.92, which was higher than that of the 3D U-Net model; on the GE 256 CT, SE-DS CT and Cochlear Deformity CT dataset tests, the Dice coefficients were 0.91, 0.93, 0 93, respectively.

      Conclusion

      According to the anatomical characteristics of the temporal bone, the use of the UNETR model can achieve fully automatic segmentation of the cochlea and obtain an accuracy close to manual segmentation. This method is feasible and has high accuracy.

      Keywords

      Abbreviations:

      CT (computed tomography), IP (Incomplete partition), SNHL (sensorineural hearing loss), CIs (cochlear implants), MRI (magnetic resonance imaging), AI (artificial intelligence), DL (deep learning)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Auris Nasus Larynx
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Huang B.Y.
        • Zdanski C.
        • Castillo M.
        Pediatric sensorineural hearing loss, part 1: practical aspects for neuroradiologists.
        AJNR Am J Neuroradiol. 2012; 33: 211-217
        • Cinar B.C.
        • Batuk M.O.
        • Tahir E.
        • Sennaroglu G.
        • Sennaroglu L.
        Audiologic and radiologic findings in cochlear hypoplasia.
        Auris Nasus Larynx. 2017; 44: 655-663
        • Sennaroglu L.
        • Saatci I.
        Unpartitioned versus incompletely partitioned cochleae: radiologic differentiation.
        Otol Neurotol. 2004; 25 (discussion 529): 520-529
        • Sennaroglu L.
        • Saatci I.
        A new classification for cochleovestibular malformations.
        Laryngoscope. 2002; 112: 2230-2241
        • George A.G.
        • Kathleen D.
        • William J.
        • et al.
        Cochlear implants in adults and children.
        NIH Consens Statement. 1995; 13: 1-30
        • Mangabeira A.
        The mondini dysplasia-from early diagnosis to cochlear implant[J].
        Acta Otolaryngol. 1983; 95: 627-631
        • Isaiah A.
        • Lee D.
        • Lenes-Voit F.
        • Sweeney M.
        • Kutz W.
        • Isaacson B.
        • et al.
        Clinical outcomes following cochlear implantation in children with inner ear anomalies.
        Int J Pediatr Otorhinolaryngol. 2017; 93: 1-6
        • Bloom J.D.
        • Rizzi M.D.
        • Germiller J.A.
        Real-time intraoperative computed tomography to assist cochlear implant placement in the malformed inner ear.
        Otol Neurotol. 2009; 30: 23-26
        • Wurfel W.
        • Lanfermann H.
        • Lenarz T.
        • Majdani O.
        Cochlear length determination using cone beam computed tomography in a clinical setting.
        Hear Res. 2014; 316: 65-72
        • Adunka O.
        • Kiefer J.
        Impact of electrode insertion depth on intracochlear trauma.
        Otolaryngol Head Neck Surg. 2006; 135: 374-382
        • Sennaroglu L.
        Cochlear implantation in inner ear malformations–a review article.
        Cochlear Implant Int. 2010; 11: 4-41
        • Johnson J.
        • Lalwani AK.
        Sensorineural and conductive hearing loss associated with lateral semicircular canal malformation.
        Laryngoscope. 2000; 110: 1673-1679
        • Caversaccio M.
        • Wimmer W.
        • Anso J.
        • Mantokoudis G.
        • Gerber N.
        • Rathgeb C.
        • et al.
        Robotic middle ear access for cochlear implantation: first in man.
        PLoS One. 2019; 14e0220543
        • Weber S.
        • Gavaghan K.
        • Wimmer W.
        • Williamson T.
        • Gerber N.
        • Anso J.
        • et al.
        Instrument flight to the inner ear.
        Sci Robot. 2017; 2: 1-12
        • Auinger A.B.
        • Dahm V.
        • Liepins R.
        • Riss D.
        • Baumgartner W.D.
        • Arnoldner C.
        Robotic cochlear implant surgery: imaging-based evaluation of feasibility in clinical routine.
        Front Surg. 2021; 8742219
        • Heutink F.
        • Koch V.
        • Verbist B.
        • van der Woude W.J.
        • Mylanus E.
        • Huinck W.
        • et al.
        Multi-scale deep learning framework for cochlea localization, segmentation and analysis on clinical ultra-high-resolution CT images.
        Comput Methods Programs Biomed. 2020; 191105387
        • Li X.
        • Gong Z.
        • Yin H.
        • Zhang H.
        • Wang Z.
        • Zhuo L.
        A 3D deep supervised densely network for small organs of human temporal bone segmentation in CT images.
        Neural Netw. 2020; 124: 75-85
        • Fauser J.
        • Stenin I.
        • Bauer M.
        • Hsu W.H.
        • Kristin J.
        • Klenzner T.
        • et al.
        Toward an automatic preoperative pipeline for image-guided temporal bone surgery.
        Int J Comput Assist Radiol Surg. 2019; 14: 967-976
        • Fauser J.
        • Bohlender S.
        • Stenin I.
        • Kristin J.
        • Klenzner T.
        • Schipper J.
        • et al.
        Retrospective in silico evaluation of optimized preoperative planning for temporal bone surgery.
        Int J Comput Assist Radiol Surg. 2020; 15: 1825-1833
        • Cho Y.S.
        • Cho K.
        • Park C.J.
        • Chung M.J.
        • Kim J.H.
        • Kim K.
        • et al.
        Automated measurement of hydrops ratio from MRI in patients with Meniere's disease using CNN-based segmentation.
        Sci Rep. 2020; 10: 7003
        • Zhang D.
        • Noble J.H.
        • Dawant B.M.
        Automatic detection of the inner ears in head CT images using deep convolutional neural networks.
        Proc SPIE Int Soc Opt Eng. 2018; 105741057427
        • Nikan S.
        • Van Osch K.
        • Bartling M.
        • Allen D.G.
        • Rohani S.A.
        • Connors B.
        • et al.
        PWD-3DNet: a deep learning-based fully-automated segmentation of multiple structures on temporal bone CT scans.
        IEEE Trans Image Process. 2021; 30: 739-753
        • Wu H.
        • Liu J.
        • Chen G.
        • Liu W.
        • Hao R.
        • Liu L.
        • et al.
        Automatic semicircular canal segmentation of CT volumes using improved 3D U-net with attention mechanism.
        Comput Intell Neurosci. 2021; 20219654059
        • Lv Y.
        • Ke J.
        • Xu Y.
        • Shen Y.
        • Wang J.
        • Wang J.
        Automatic segmentation of temporal bone structures from clinical conventional CT using a CNN approach.
        Int J Med Robot. 2021; 17: e2229
        • Wang J.
        • Lv Y.
        • Wang J.
        • Ma F.
        • Du Y.
        • Fan X.
        • et al.
        Fully automated segmentation in temporal bone CT with neural network: a preliminary assessment study.
        BMC Med Imaging. 2021; 21: 166
        • Hussain R.
        • Lalande A.
        • Girum K.B.
        • Guigou C.
        • Grayeli AB.
        Automatic segmentation of inner ear on CT-scan using auto-context convolutional neural network.
        Sci Rep. 2021; 11: 4406
        • Vaidyanathan A.
        • van der Lubbe M.
        • Leijenaar R.T.H.
        • van Hoof M.
        • Zerka F.
        • Miraglio B.
        • et al.
        Deep learning for the fully automated segmentation of the inner ear on MRI.
        Sci Rep. 2021; 11: 2885
        • Çiçek Ö.
        • Abdulkadir A.
        • Lienkamp S.
        • Brox T.
        • Ronneberger O.
        3D U-Net: learning dense volumetric segmentation from sparse annotation.
        (ed.)in: Ourselin S Joskowicz L Sabuncu M Unal G Wells W Medical image computing and computer-assisted intervention, lecture notes in computer science. Springer, Cham, Switzerland2016: 424-432
      1. Ali H, Yucheng T, Vishwesh N, Dong Y, Andriy M, Bennett L, et al. UNETR: transformers for 3D medical image segmentation. arXiv preprint arXiv:2103.10504, 2021.

        • Sennaroglu L.
        • Bajin M.D.
        Classification and current management of inner ear malformations.
        Balkan Med J. 2017; 34: 397-411
        • Hussain R.
        • Lalande A.
        • Berihu Girum K.
        • Guigou C.
        • Grayeli A.B.
        Augmented reality for inner ear procedures: visualization of the cochlear central axis in microscopic videos.
        Int J Comput Assist Radiol Surg. 2020; 15: 1703-1711