Advertisement

Drug-induced olfactory and gustatory dysfunction: Analysis of FDA adverse events reporting system

Published:January 20, 2023DOI:https://doi.org/10.1016/j.anl.2022.12.012

      Abstract

      Objectives

      With the COVID-19 pandemic, there is growing interest and research in olfactory and gustatory dysfunction (OGD). Drug-induced dysfunction is an often overlooked etiology. While several medications include smell or taste disturbance as a side effect, there are no publications describing which medications are most frequently implicated. We aim to describe the patterns of these adverse drug reactions (ADRs) using the FDA Adverse Events Reporting System (FAERS).

      Methods

      The FAERS database was queried from 2011 to 2021 for terms describing ADRs related to OGD. Terms included anosmia, hyposmia, olfactory test abnormal, olfactory nerve disorder, hallucination olfactory, parosmia, ageusia, hypogeusia, dysgeusia, and taste disorder. We identified the top reported medications associated with general smell dysfunction, general taste dysfunction, reduced smell, and altered smell.

      Results

      From 2011 to 2021, 16,091 ADRs were reported with OGD, of which13,641 (84.8%) and 2,450 (15.2%) were associated with gustatory and olfactory reactions, respectively. Zinc products (370 reports) and fluticasone propionate (214) were most commonly associated with olfactory dysfunction, specifically reduced olfaction. Varenicline (24) and fluticasone propionate (23) were most commonly associated with altered smell. Lenalidomide (490) and sunitinib (468) were most commonly associated with gustatory dysfunction. Antineoplastic and immunomodulating medications accounted for 21.6% and 36.3% of olfactory and gustatory ADRs, respectively. Among this category, immunoglobulin drugs were the most commonly associated with OGD ADRs.

      Conclusion

      Gustatory dysfunction is more commonly reported ADR compared with olfactory dysfunction. Immunologic/rheumatologic medications are the leading culprit of reported OGD. With increasing numbers of patients presenting to otolaryngologists for OGD, it is important to consider drug-induced etiology.

      Level of evidence

      III.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Auris Nasus Larynx
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hoffman H.J.
        • Rawal S.
        • Li C.M.
        • Duffy V.B.
        New chemosensory component in the U.S. National Health and Nutrition Examination Survey (NHANES): first year results for measured olfactory dysfunction.
        Rev Endocr Metab Disord. 2016; 17: 221-240
        • Pinto J.M.
        • Wroblewski K.E.
        • Kern D.W.
        • Schumm L.P.
        • McClintock M.K.
        Olfactory dysfunction predicts 5-year mortality in older adults.
        PLoS One. 2014; 9e107541
        • Liu B.
        • Luo Z.
        • Pinto J.M.
        • Shiroma E.J.
        • Tranah G.J.
        • Wirdefeldt K.
        • et al.
        Relationship between poor olfaction and mortality among community-dwelling older adults: a cohort study.
        Ann Intern Med. 2019; 170: 673-681
        • Agyeman A.
        • Chin K.
        • Landersdorfer C.
        • Liew D.
        • Ofori-Asenso R.
        Smell and taste dysfunction in patients with COVID-19: a systematic review and meta-analysis.
        Mayo Clin Proc. 2020; 95: 1621-1631
        • Butowt R.
        • von Bartheld C.S.
        Anosmia in COVID-19: underlying mechanisms and assessment of an olfactory route to brain infection.
        Neuroscientist. 2021; 27: 582-603
        • Hannum M.
        • Ramirez V.
        • Lipson S.
        • Herriman R.
        • Toskala A.
        • Lin C.
        • et al.
        Objective sensory testing methods reveal a higher prevalence of olfactory loss in COVID-19-positive patients compared to subjective methods: a systematic review and meta-analysis.
        Chem Senses. 2020; 45: 865-874
        • Khan A.M.
        • Kallogjeri D.
        • Piccirillo J.F.
        Growing public health concern of COVID-19 chronic olfactory dysfunction.
        JAMA Otolaryngol Head Neck Surg. 2022; 148: 81-82
        • Hummel T.
        • Whitcroft K.
        • Andrews P.
        • Altundag A.
        • Cinghi C.
        • Costanzo R.
        • et al.
        Position paper on olfactory dysfunction.
        Rhinology. 2016; 56 (PMID: 28623665): 1-30
        • Jafek B.W.
        • Murrow B.
        • Michaels R.
        • Restrepo D.
        • Linschoten M.
        Biopsies of human olfactory epithelium.
        Chem Senses. 2002; 27: 623-628
      1. Najafloo R., Majidi J., Asghari A., Aleemardani M., Kamrava S.K., Simorgh S., Seifalian A., Bagher Z., Seifalian A.M. Mechanism of anosmia caused by symptoms of COVID-19 and emerging treatments. ACS Chem Neurosci. 202;12(20):3795-3805. PMID: 34609841.

        • Apter A.J.
        • Gent J.F.
        • Frank M.E.
        Fluctuating olfactory sensitivity and distorted odor perception in allergic rhinitis.
        Arch Otolaryngol Head Neck Surg. 1999; 125: 1005-1010
        • Deems D.
        • Doty R.
        • Settle R.
        • Moore-Gillon V.
        • Shaman P.
        • Mester A.
        • et al.
        Smell and taste disorders, a study of 750 patients from the University of Pennsylvania Smell and Taste Center.
        Arch Otolaryngol Head Neck Surg. 1991; 117: 519-528
        • Pribitkin E.
        • Rosenthal M.D.
        • Cowart B.J.
        Prevalence and causes of severe taste loss in a chemosensory clinic population.
        Ann Otol Rhinol Laryngol. 2003; 112: 971-978
        • Schiffman S.S.
        Influence of medications on taste and smell.
        World J Otorhinolaryngol Head Neck Surg. 2018; 4: 84-91
        • Henkin R.I.
        Drug-induced taste and smell disorders. Incidence, mechanisms and management related primarily to treatment of sensory receptor dysfunction.
        Drug Saf. 1994; 11: 318-377
        • Kim J.
        Polypharmacy and medication management in older adults.
        Nurs Clin N Am. 2017; 52: 457-468
      2. U.S. Food and Drug Administration. Warnings on three zicam intranasal zinc products. Available at: http://www.fda.gov/ForConsumers/ConsumerUpdates/ucm166931.htm. Accessed March 17, 2022.

      3. FDA Potential Risk Medications. Available at: https://www.fda.gov/drugs/questions-and-answers-fdas-adverse-event-reporting-system-faers/july-september-2021-potential-signals-serious-risksnew-safety-information-identified-fda-adverse. Accessed March 17, 2022.

      4. FDA Adverse Event Reporting System (FAERS) Public dashboard. Available at: https://www.fda.gov/drugs/questions-and-answers-fdas-adverse-event-reporting-system-faers/fda-adverse-event-reporting-system-faers-public-dashboard. Accessed February 1, 2022.

        • Wang Y.
        • Jorizzo J.L.
        Retrospective analysis of adverse events with dupilumab reported to the United States food and drug administration.
        J Am Acad Dermatol. 2021; 84: 1010-1014
        • Kan Y.
        • Nagai J.
        • Uesawa Y.
        Evaluation of antibiotic-induced taste and smell disorders using the FDA adverse event reporting system database.
        Sci Rep. 2021; 11: 9625
        • Kaur A.
        • Wang S.
        • Yu A.
        • Elrafei T.
        • Steinberg L.
        • Abhishek K.
        Real-world risk of anosmia with cancer directed systemic therapy: a pharmacovigilance assessment using FDA adverse events reporting system (FAERS) database.
        J Clin Oncol. 2021; 39 (e18790-e18790)
      5. Post T.W.. UpToDate. https://www.wolterskluwer.com/en/solutions/uptodate. Accessed December 1st, 2021.

        • Schiffman S.
        • Zervakis J.
        Taste and smell perception in the elderly: effect of medications and disease.
        Adv Food Nutr Res. 2002; 44: 247-346
        • Doty R.L.
        • Shah M.
        • Bromley S.M.
        Drug-induced taste disorders.
        Drug-Saf. 2008; 31: 199-215
        • Medical Economics Company, Inc.
        Physicians’ Desk Reference.
        Medical Economics Company, Inc., Montvale (NJ)2005
      6. Kane S.P. The top 300 of 2019, ClinCalc DrugStats Database, Version 2021.10. ClinCalc: https://clincalc.com/DrugStats/Top300Drugs.aspx. Updated September 15, 2021. Accessed February 9, 2022

        • Mortazavi H.
        • Shafiei S.
        • Sadr S.
        • Safiaghdam H.
        Drug-related dysgeusia: a systematic review.
        Oral Health Prev Dent. 2018; 16: 499-507
        • Halyard M.Y.
        Taste and smell alterations in cancer patients—real problems with few solutions.
        J Support Oncol. 2009; 7: 68-69
        • Hong J.
        • Omur-Ozbek P.
        • Stanek B.
        • Dietrich A.
        • Duncan S.
        • Lee Y.
        • et al.
        Taste and odor abnormalities in cancer patients.
        J Support Oncol. 2009; 7: 58-65
        • Benboubker L.
        • Dimopoulos M.
        • Dispenzieri A.
        • Catalano J.
        • Belch A.
        • Cavo M.
        • et al.
        Lenalidomide and dexamethasone in transplant-ineligible patients with myeloma.
        N Engl J Med. 2014; 371: 906-917
        • Morschhauser F.
        • Fowler N.
        • Feugier P.
        • Bouabdallah R.
        • Tilly H.
        • Palomba M.
        • et al.
        Rituximab plus lenalidomide in advanced untreated follicular lymphoma.
        N Engl J Med. 2018; 379: 934-947
        • Leonard J.
        • Trneny M.
        • Izutsu K.
        • Fowler N.
        • Hong X.
        • Zhu J.
        • et al.
        AUGMENT: a phase III study of lenalidomide plus rituximab versus placebo plus rituximab in relapsed or refractory indolent lymphoma.
        J Clin Oncol. 2019; 37: 1188-1199
        • Bjarnason G.
        • Knox J.
        • Kollmannsberger C.
        • Soulieres D.
        • Ernst D.
        • Zalewski P.
        • et al.
        The efficacy and safety of sunitinib given on an individualised schedule as first-line therapy for metastatic renal cell carcinoma: a phase 2 clinical trial.
        Eur J Cancer. 2019; 108: 69-77
        • Albiges L.
        • Tannir N.
        • Burotto M.
        • McDermott D.
        • Plimack E.
        • Barthélémy P.
        • et al.
        Nivolumab plus ipilimumab versus sunitinib for first-line treatment of advanced renal cell carcinoma: extended 4-year follow-up of the phase III CheckMate 214 trial.
        ESMO Open. 2020; 5e001079
      7. Celgene Corporation. Revlimid (lenalidomide) [package insert]. U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/021880Orig1s064lblrpl.pdf. Revised August 2021. Accessed March 18, 2022.

      8. Pfizer Incorporated. Sutent (sunitinib) [package insert]. U.S. Food and Drug Adminstration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/021938s037lbl.pdf. Revised August 2020. Accessed March 18, 2022.

      9. Timeline of progress of immunotherapy drugs. https://www.cancerresearch.org/en-us/immunotherapy/timeline-of-progress. Accessed March 17, 2022.

        • Tuccori M.
        • Lapi F.
        • Testi A.
        • Ruggiero E.
        • Moretti U.
        • Vannacci A.
        • et al.
        Drug-induced taste and smell alterations: a case/non-case evaluation of an italian database of spontaneous adverse drug reaction reporting.
        Drug Saf. 2011; 34 (PMID: 21879779): 849-859
        • Del Bortolo Ruenis A.
        • Nobre Franco G.
        • Baglie S.
        • Lopes Motta R.
        • Simões R.
        • Rosalen P.
        • et al.
        A PK/PD approach on the effects of clarithromycin against oral and nasal microbiota of healthy volunteers.
        Int J Clin Pharmacol Ther. 2009; 47: 96-103
        • Alexander T.H.
        • Davidson T.M.
        Intranasal zinc and anosmia: the zinc-induced anosmia syndrome.
        Laryngoscope. 2006; 116: 217-220
        • Davidson T.M.
        • Smith W.M.
        The Bradford Hill criteria and zinc-induced anosmia: a causality analysis.
        Arch Otolaryngol Head Neck Surg. 2010; 136: 673-676
      10. Sales of the leading nasal spray/drops/inhaler brands in the United States in 2019 (in million U.S. dollars). https://www.statista.com/statistics/433651/leading-nasal-spray-brands-in-the-us. Accessed November 18, 2022.

        • Gamper E.
        • Zabernigg A.
        • Wintner L.
        • Giesinger J.
        • Oberguggenberger A.
        • Kemmler G.
        • et al.
        Coming to your senses: detecting taste and smell alterations in chemotherapy patients. A systematic review.
        J Pain Symptom Manag. 2012; 44: 880-895
        • Lyckholm L.
        • Heddinger S.
        • Parker G.
        • Coyne P.
        • Ramakrishnan V.
        • Smith T.
        • et al.
        A randomized, placebo controlled trial of oral zinc for chemotherapy-related taste and smell disorders.
        J Pain Palliat Care Pharmacother. 2012; 26: 111-114
        • Komai M.
        • Goto T.
        • Suzuki H.
        • Takeda T.
        • Furukawa Y.
        Zinc deficiency and taste dysfunction; contribution of carbonic anhydrase, a zinc-metalloenzyme, to normal taste sensation.
        Biofactors. 2000; 12: 65-70
        • Equils O.
        • Lekaj K.
        • Fattani S.
        • Wu A.
        • Liu G.
        Proposed mechanism for anosmia during COVID-19: the role of local zinc distribution.
        J Trans Sci. 2020; 7: 1-2
        • Equils O.
        • Lekaj K.
        • Wu A.
        • Fattani S.
        • Liu G.
        • Rink L.
        Intra-nasal zinc level relationship to COVID-19 anosmia and type 1 interferon response: a proposal.
        Laryngoscope Investig Otolaryngol. 2020; 6: 21-24
        • Aliani M.
        • Udenigwe C.
        • Girgih A.
        • Pownall T.
        • Bugera J.
        • Eskin M.
        Zinc deficiency and taste perception in the elderly.
        Crit Rev Food Sci Nutr. 2013; 53: 245-250
        • Ajmani G.
        • Suh H.
        • Wroblewski K.
        • Pinto J.
        Smoking and olfactory dysfunction: a systematic literature review and meta-analysis.
        Laryngoscope. 2017; 127: 1753-1761
        • Schiffman S.S.
        Effects of aging on the human taste system.
        Ann NY Acad Sci. 2009; 1170: 725-729
        • Zhang N.
        • Sundquist J.
        • Sundquist K.
        • Ji J.
        An increasing trend in the prevalence of polypharmacy in Sweden: a nationwide register-based study.
        Front Pharmacol. 2020; 11: 326
        • Wastesson J.W.
        • Morin L.
        • Tan E.C.K.
        • Johnell K.
        An update on the clinical consequences of polypharmacy in older adults: a narrative review.
        Expert Opin Drug Saf. 2018; 17: 1185-1196
        • Vaira L.A.
        • Salzano G.
        • Deiana G.
        • De Riu G.
        Anosmia and Ageusia: common findings in COVID-19 patients.
        Laryngoscope. 2020; 130: 1787
      11. John T.J., Wear W.E.S., Seshadri M.S. https://www.worldometers.info/coronavirus/ Accessed March 17 2022.

        • Tong J.Y.
        • Wong A.
        • Zhu D.
        • Fastenberg J.H.
        • Tham T.
        The prevalence of olfactory and gustatory dysfunction in COVID-19 patients: a systematic review and meta-analysis.
        Otolaryngol Head Neck Surg. 2020; 163: 3-11
        • Kaye R.
        • Chang C.W.D.
        • Kazahaya K.
        • Brereton J.
        • Denneny III, J.C.
        COVID-19 anosmia reporting tool: initial findings.
        Otolaryngol.–Head Neck Surg. 2020; 163: 132-134
        • Yu R.J.
        • Krantz M.S.
        • Phillips E.J.
        • Stone Jr., C.A.
        Emerging causes of drug-induced anaphylaxis: a review of anaphylaxis-associated reports in the FDA adverse event reporting system (FAERS).
        J Allergy Clin Immunol Pract. 2021; 9 (e2): 819-829
        • Kamitaki B.
        • Minacapelli C.
        • Zhang P.
        • Wachuku C.
        • Gupta K.
        • Catalano C.
        • et al.
        Drug-induced liver injury associated with antiseizure medications from the FDA adverse event reporting system (FAERS).
        Epilepsy Behav. 2021; 117107832
        • Cirmi S.
        • El Abd A.
        • Letinier L.
        • Navarra M.
        • Salvo F.
        Cardiovascular toxicity of tyrosine kinase inhibitors used in chronic myeloid leukemia: an analysis of the FDA adverse event reporting system database (FAERS).
        Cancers. 2020; 12 (Basel): 826
        • Morice A.
        • Kitt M.
        • Ford A.
        • Tershakovec A.
        • Wu W.
        • Brindle K.
        • et al.
        The effect of gefapixant, a P2 × 3 antagonist, on cough reflex sensitivity: a randomised placebo-controlled study.
        Eur Respir J. 2019; 54 (PMID: 31023843)1900439
        • Bo X.
        • Alavi A.
        • Xiang Z.
        • Oglesby I.
        • Ford A.
        • Burnstock G.
        Localization of ATP-gated P2 × 2 and P2 × 3 receptor immunoreactive nerves in rat taste buds.
        Neuroreport. 1999; 10: 1107-1111